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Abstract— Vision Language Models (VLMs) have achieved
impressive performance in 2D image understanding; how-
ever, they still struggle with spatial understanding, which
is fundamental to embodied AL In this paper, we propose
SpatialBot, a model designed to enhance spatial understanding
by utilizing both RGB and depth images. To train VLMs for
depth perception, we introduce the SpatialQA and SpatialQA-
E datasets, which include multi-level depth-related questions
spanning various scenarios and embodiment tasks. SpatialBench
is also developed to comprehensively evaluate VLLMs’ spatial
understanding capabilities across different levels. Extensive
experiments on our spatial-understanding benchmark, general
VLM benchmarks, and embodied AI tasks demonstrate the
remarkable improvements offered by SpatialBot. The model,
code, and datasets are available at https://github.com/
BAAI-DCAI/SpatialBot,

I. INTRODUCTION

Recently, Vision Language Models (VLM) [1], [2], [3],
[4], [5], [6] have demonstrated notable capabilities in general
2D visual understanding and reasoning, based on vision
encoder-based perception and language model-based reason-
ing. However, it is still challenging for VLMs to comprehend
spatial information from 2D images merely, which is the key
to implementing various real-world tasks [7], [8], [9], [10],
[11], particularly those embodied Al related tasks such as
manipulation [12], [13], [14], [15] and navigation [16], [17],
[18], [19].

The main challenges for VLMs to have spatial under-
standing ability are in the following aspects: 1) Popular
VLMs have limited capacity to understand depth information
as they are only trained on RGB images without seeing
depth images. In addition, the training tasks need little depth
information to solve. Consequently, directly inputting depth
maps into VLMs results in poor performance. 2) A well-
designed dataset for training VLMs to understand depth is
absent. The popular VLM tuning datasets provide neither
depth maps nor depth-related tasks. 3) The inconsistency of
the scales between indoor and outdoor numerical depth is
also an important problem preventing VLM from uniformly
processing depth in various tasks. For example, tasks such as
indoor navigation and manipulation require millimeter-level
precision, whereas outdoor tasks do not necessitate such high
precision but demand a broader depth range.
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Has the gripper touched the rag?
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Has the gripper touched the rag?

GPT-40 x

Yes, the gripper has touched the rag.
The gripper is visibly in contact with
the rag in the image.

Human | RGB (@) + Depth B)
Can the robot close the gripper now
to pick up the rag?

SpatialBot «

The gripper’s depth value is 584,
and the rag’s is 875. Since 584 < 875,
it can be inferred that the gripper
has not touched the rag.

GPT-40 x

Yes, since the gripper is already in
contact with the rag, the robot can
proceed to close the gripper to pick
up the rag.

Human | RGB (@] + Depth B)

Can the robot close the gripper now

to pick up the rag?

SpatialBot

No, because the gripper has not
reached rag. The robot needs to lower
and stretch forward the gripper.

Fig. 1. SpatialBot has better spatial understanding ability than GPT-4o.
From a single RGB image, even a human can not judge whether the gripper
has touched the rag. GPT-4o fails even if looking at both RGB and depth
images. SpatialBot first obtains depth information of target objects from the
depth map, and then judges that the gripper has not yet touched the rag.

To address these challenges, we propose SpatialBot, which
can precisely comprehend spatial information through depth
images and perform robotic manipulation. We design a pro-
gressive training approach to first improve the general spatial
understanding capacity of VLMs with the proposed Spa-
tialQA dataset, which contains general conversation tasks.
We then leverage this spatial understanding capacity for
embodied tasks using the collected robot manipulation task
dataset, SpatialDA-E. We design various purpose-specific
QA tasks that heavily rely on spatial understanding from low
to high levels. These tasks include low-level depth estima-
tion, middle-level object detection, referring QA, and depth
comparison, high-level tasks that require depth reasoning,
such as understanding spatial relationships in both general
conversations and robot manipulation. To enable the model
to accurately obtain depth information, we designed a depth
API that allows the model to query the depth values of
individual pixels or regions.

We validate the spatial comprehension capacity of VLMs
with SpatialBench which consists of manually annotated
question-answer pairs on spatial understanding and reason-
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ing. We also deploy SpatialBot on robots to do manipulation
tasks, for example, picking up the teacup in the middle
and placing it on the closest board, as shown in Fig.
The experimental results verify that our SpatialBot can
understand the depth in the three levels. Furthermore, it
is also verified that the fine-tuning of VLMs in SpatialQA
can improve their performance on general VLM benchmarks
such as MME [20], MMBench [21], etc. Finally, robot ma-
nipulation abilities demonstrate the promising applications of
SpatialBot. In summary, the main contributions of our work
are as follows:

o We propose SpatialBot that shows promising perfor-
mance in general visual recognition, spatial understand-
ing, and robot manipulation.

o We curate a large-scale RGB-D VQA dataset, Spa-
tialQA, for training SpatialBot, and SpatialBench for
evaluating VLMSs’ spatial understanding performances.
Three levels of tasks have been designed for a compre-
hensive analysis of depth.

« We finetune and deploy SpatialBot on embodiment tasks
that involve spatial reasoning, and release the robot
manipulation dataset focusing on spatial relationships,
namely SpatialQA-E.

II. RELATED WORK
A. VLM and RGB Datasets

In recent years, VLMs (or Multi-modal Large Lan-
guage Models (MLLMSs)) have achieved significant advance-
ments [22]. LLaVA [3] pioneered visual instruction tuning,
which is followed by subsequent works [5], [23], [6], [24],
[25] with more extensive datasets [26] and different large lan-
guage model (LLM) backbones [27], [28], [29], [30]. These
VLMs are mainly used to tackle tasks related to percep-
tion [20], reasoning [21], and optical character recognition
(OCR) [31], [32]. Additionally, some works have introduced
an encoder-decoder structure beyond VLMs to perform pixel-
level grounding tasks [33], [34], [35], [36], [37], [38].
However, their performances in spatial relationship under-
standing [39] are mediocre. We posit that comprehending the
entire space from a monocular RGB image is overwhelming
for VLMs. Integrating depth information could effectively
enhance the spatial understanding capabilities of VLMs.

B. Spatial Understanding in General QA and Embodiment

Spatial understanding requires VLMs to understand scenes
beyond 2D RGB images. This is particularly crucial in
precision tasks such as robotic grasping [40]. Spatial un-
derstanding can be achieved through point clouds [40],
[41] or depth maps [39]. Some studies have attempted to
perform depth estimation [42] and 3D detection [43] directly
from monocular RGB images, but the accuracy is limited
regarding metric depth estimation. Spatial VLM [44] and
SpatialRGPT [45] infer spatial relationships only from 2D
images. However, in robotic tasks (see, e.g., Fig. E]), depth
information from sensors is essential for spatial understand-
ing. Recently, Monocular Depth Estimation (MDE) has seen
rapid advancements. Using large amounts of unsupervised

data [46], [47] and synthetic data [48], MDE can accurately
estimate the depth in various scenarios [49]. Therefore,
we improve the spatial understanding of VLMs by adding
depth information to the RGB images they use, leveraging
MDE. Despite the strength of monocular depth estimation
models, training large models to estimate depth directly is
not always feasible. In embodied Al scenarios, precise depth
information is required from hardware devices, which depth
estimation models cannot achieve. Additionally, enabling
VLMs to precisely understand space from a single RGB
image has proven to be extremely difficult [42], [43]. To
extend spatial understanding abilities to embodiment, we
propose spatial QA-E. To the best of our knowledge, it is
the first manipulation dataset that focuses on spatial rela-
tionships. SpatialBot utilizes a similar model structure with
state-of-the-art vision-language-action models like RT [50],
[51], Octo [52] and OpenVLA [53], while acquires spatial
knowledge necessary in manipulation tasks through training
on SpatialQA-E.

III. SpATIALBOT

We use depth information to guide VLMs in understanding
spatial relationships [54], [55]. Compared to point clouds,
depth information is easier to collect and process. Moreover,
since RGB-D cameras are affordable, most robots carry
such cameras to instantly capture RGB and depth images.
In addition, due to the remarkable capacities of Monocular
Depth Estimation (MDE), one can quickly adapt large-scale
RGB datasets to RGB-D datasets in an affordable way.

A. Depth Map Encoding

Our depth encoding aims to preserve all depth information
for VLMs to use. A challenge is the indoor and outdoor
consistency. Indoor scenes like robot manipulation [13] and
indoor navigation [56], [57] may require millimeter-level
precision, while outdoor scenes include a large range of
depth values. Existing methods often adopt ordinal encod-
ing [58], [46], which, however, cannot be subjected to basic
mathematical operations. To address the issue, we use uint24
or three-channel uint8 to store depth values, measured in
millimeters from 1mm to 131.071m. We directly save the
raw depth values and leave subsequent computations to the
powerful fitting capabilities of VLMs. For single-channel
uint24, we use millimeters as a unit directly. This way,
VLMs can directly query the required values from the depth
map. For three-channel uint8 images, we distribute the values
across a broader range: the units for the three channels are
20, 2, and 2!° millimeters, respectively. Each channel has
23,2, and 27 possible values. For an image of size (H,W),
to store depth value dp w (in millimeters) in three-channel
uint8 image 113-1,W’ we encode the image [ following:

10 = (diw/[2'0) %2 1y = (dne//2) 23, (1)
17, = (dp%2°) 27 2)

The choice of 2! mm as a unit for the first channel is
influenced by the depth range in many desktop grasping
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§ Counting and Enumeration

Q: How many orange bowls are there on
the table?
A:There are 3 orange bowls.

Q: How many bowls that are upside-down
are there on the table?

Fig. 2.

A vertical structure, can be seen extend-
ing upwards from the middle of the image. |
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Q: Which is closer to the camera, the
ROLEX clock, or the pickup truck? )

A: The clock has a depth value of 4909, while
the pickup truck corresponds to a metric
depth of 17802, so the ROLEX clock is
closer to the camera.

 Q:Which appears to be more distant, the
\ or the point (0.39, 0.74)?
1 A:The corresponds to a
\  depthof 9312, and the point (0.39,0.74) ...
-

patial Relationship Understanding }
Q: Which bowl is closest to the gripper? ‘:‘
A }

(%3]

:The orange bowl.

Q: If the red cup is to the right side of the
gripper, what is the spatial relationship
between the purple cup and the gripper?

A:The purple cup is to the left side of the
gripper, and closer to the camera.

The proposed SpatialQA dataset consists of basic, middle, and high-level VQAs in general VLM tasks, aiming to (a) help VLMs understand

depth images, (b) let VLMs learn to align RGB and depth images, (c) enable VLMs to do high-level tasks better by understanding both RGB and depth
images, as depth images provide clear boundary information and spatial relationships.

tasks in robotics [59], [60], [61], [62], [63], [64], [65], which
typically have a maximum depth of around 1m. A larger unit
would result in the first channel being predominantly zero in
most scenarios. Similarly, we use multipliers of 2 and 8 to
better distinguish three-channel depth maps. Our experiments
have validated that VLMs can easily learn the relationship
between our encoding method and the actual depth values.

B. Depth Description of an Object

We do not use a separate image encoder to maintain gen-
erality, so SpatialBot cannot output pixel-level information.
Intuitively, the center point of objects can simply represent
their depth. However, for example, in the case of a cup,
there is a significant difference between the inner and outer
surfaces, so a single value cannot accurately represent the
depth. Therefore, we use four depth values—max, min,
mean, and center—to describe the object’s depth, if its mask
is available. Considering that the mask and depth map cannot
be precise, we use the 95th and 5th percentile values as the
max and min depth values. If accurate bounding boxes are
available, we prompt SAM [66] with the bounding box and
its central point to get object masks. If not, we use the depth
value of the center point of the bounding box.

C. SpatialQA Pipeline

To help VLMs understand depth inputs and use depth
information to do high-level tasks like spatial relationship

understanding, counting, and enumeration, we design a three-
step QA pipeline: (a) This pipeline progressively lets VLM
learn to understand depth, align depth and RGB, and use
depth for complex reasoning in high-level tasks. (b) Existing
RGB datasets can be easily converted to RGB-Depth datasets
with our pipeline.

1) Low Level: To enable VLMs to understand depth
images and learn to query information from them, we ask
for the depth value of points. VLMs should learn to take
the depth value directly from depth inputs and relate point
coordinates with pixels in the image. Meanwhile, since the
visual encoder does not see depth images in pre-training, we
also expect the encoder and projector to learn to encode depth
images together with RGB images. We also let SpatialBot
describe the depth map and infer what may be in the images,
giving only a depth map.

2) Middle Level: As VLMs have learned to encode and
query information from depth images, they should now learn
to use depth information. Also, since image and depth inputs
are given to VLMs, they should know the relationships
between them. First, we ask about proximity relationships,
namely, which point is closer or further away. Second, we
let VLMs learn to describe the depth of objects or regions
by using center point depth, minimum, maximum, and mean
depth. VLMs should learn to locate an object in the RGB
image and then find depth information from depth input.
Third, we ask about proximity relationships between objects.
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Fig. 3.
Depth API if it needs accurate depth information.

3) High Level: Since VLMs can now understand depth
input, align depth with RGB, and have some knowledge
about proximity in the spatial world, we design tasks to help
VLMs apply depth at a higher level. When the model sees
the depth map, the boundaries of objects and their surround-
ings become clearer, so we believe the depth map aids in
grounding and counting tasks. Additionally, in SpatialQA,
the model develops a clear understanding of space, which
aids in determining spatial and positional relationships.

D. SpatialQA-E

We propose SpatialQA-E to extend spatial understanding
and reasoning abilities to embodiment tasks. We use the 7-
axis Franka Research 3 Robotic Arm to grasp objects on the
table, avoid obstacles while moving, and place them on a
cutting board on the table. We include spatial relationships in
language instructions, so the model should learn spatial rea-
soning in manipulation. Spatial QA-E contains 2000 episodes
in total. The dataset is composed of 4 steps, shown in Fig. ff]
and Fig. 5}

e Learn to pick and place teacups, balls, bananas, etc.

« Find specific object and destination. The dataset in-
cludes spatial relationships in positive, comparative (-
er), and superlative (-est) degrees from the perspective
of the robot or the human (camera):

— Positional: left/ right/ middle/ up/ down on/ in/ inside/
outside

— Size: tall/ short/ large/ small/ wide/ thin/ big/ small

— Illusion: we take photos of objects, print them out,
and put the printed object on the table. It looks real,
and the model needs to tell between printed and real

...........................................................

The architecture of SpatialBot. It takes a pair of RGB and depth images as input, where depth images are optional. SpatialBot can choose to call

objects through visual clues, e.g., depth information
(printed objects are flat) and shadows.
« In moving objects, the robot needs to avoid obstacles.

OO E@@

E] Learn to Pick-and-Place Find the object Find the destination
@J,.. Do @@

Avoid Obstacles 1

CD@CD 65 @5@

Fig. 4. SpatialQA-E involves spatial relationships in robot manipulation.

Instruction:

Pick up the teacup in the middle
and place it on the closest cutting
board.

&

E. SpatialBot in Embodiment Tasks

SpatialBot is finetuned on Spatial QA-E to work on embod-
iment tasks. In short, it is a Vision-Language-Action (VLA)
model that supports multi-frame RGB or RGB-D inputs.
Robot manipulation tasks are specified as: in current time
stamp 7, given history and current image observations x;._
(RGB or RGB-D), models should learn policy 7(|i,x;_).
Action a; is sampled from 7 and applied to robots. For
a robot of two-finger end effector, action space can be
represented as 7 DoF vector: (AX,AY,AZ,AR,AP,AYaw,C),
indicating delta change in poses XYZ and rotation RPYa
(roll, pitch, yaw), gripper closure C. The delta change in
position and rotation of action space is encoded into 101
possible values, from 0, 0.01 to 1. The model output texts of
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Fig. 5. SpatialQA-E demonstration. Left: 4 steps in picking up the real
teacup and putting it on the right cutting board relative to the camera. We
print the teacup as a distraction. It’s easier to tell between the real and
printed teacup from the depth map. Right: 4 sample settings in Spatial QA-
E, where we specify spatial relationships.

7 DoF actions directly. A sample conversation: *User: What
should the robot do to pick up the biggest teacup and move
it to the left cutting board? Answer with robot parameters. -
SpatialBot: The robot should <0.17, 0.51, 0.44, 0.62, 0.83,
0.07, 1>’. Then we decode the output to robot control signals
to control the robot movement of each frame. If the model
directly answers robotic parameters during the finetuning
stage, we find that it can only respond to robot-specific
questions. To enable multi-task training, we incorporate some
natural language elements into the robot’s responses, such as
’The robot should’. Then, we train the model on robotic data
and general QA data, such as SpatialQA-E and SpatialQA.
We have the model predict special tokens during robotic
tasks to maintain the model’s numerical reasoning abilities
in general conversations. We predict each frame’s delta pose
instead of the target pose. This choice allows for more precise
control of the robot by dividing each dimension of the action
space into 100 bins.

F. SpatialBench

To evaluate VLM’s performance on general tasks, we
annotate the SpatialBench. The following questions are in-
cluded:

« Has [Object 1] touched/reached [Object 2]?

o What is the spatial relationship between [Object]s?

« Counting and enumeration.

« Size comparison between objects.

G. SpatialBot Model with Depth API

To enable the model to accurately obtain depth informa-
tion, we design Depth API. When the SpatialBot’s output
contains text with a format of Depth(point), the API will

query the depth value of that point in the corresponding depth
map and then input this depth value back into SpatialBot.
Combining the user’s question with the API’s return value,
SpatialBot will provide the final answer. The model can call
the API to get the precise depth value of a specific point.
For example, when SpatialBot wants to know the depth
information of an object, it first determines the bounding box
of the object and then calls the Depth API using the center
point of the bounding box. If the model wants to obtain the
depth range of this object, it first observes which points in
the image correspond to the maximum and minimum depth
values and calls the Depth API using the coordinates of these
points. However, to enhance the model’s understanding of the
depth map itself, we only allow SpatialBot to call the API
on a subset of the data during training.

IV. EXPERIMENTS

We start with validating that SpatialBot can understand
depth, extract information from depth maps, and perform
high-level tasks in SpatialBench. Then, we show model
performance in general VLM tasks by introducing depth
maps and training on SpatialQA. Finally, experiments on
embodiment tasks show that SpatialBot benefits from un-
derstanding depth in pick-and-place tasks.

A. SpatialBench

We compare model performance on our SpatialBench,
which is composed of positional relationship, object ex-
istence, reaching, and size comparison tasks. GPT-4o0 and
LLaVA-v1.6-34B [3] without training on SpatialQA are
compared with models trained on SpatialQA. 3B, 4B, and
8B models trained on Spatial QA reaches comparable results
with GPT-4o. Results are reported in Table [ We do not
report GPT-40 results on depth estimation because they were
extremely poor. We’re uncertain whether this was due to
suboptimal prompts or if GPT-40 simply lacks the capability
for this task.

B. General VLM Benchmarks

We report results on general benchmarks: MME per-
ception [20] (MMEP), MME cognition (MMES), MM-
Bench [21] test and dev set (MMBT and MMBP), SEED
Bench Image [31] (SEED(-I)), VQA [67] test-dev split
(VQAY?), GQA [68], and POPE [69] (the averaged F1-score
of three categories on the validation set of COCO). In most
of these benchmarks, RGB information alone is enough. We
only use RGB-Depth input on MMEF and GQA, since they
contain counting, existence, and position questions, where
we expect depth information can benefit such cases.

C. SpatialBot in Embodiment Tasks

We finetune SpatialBot on SpatialQA-E to do manip-
ulation tasks on real robots. It can be seen as a VLA
model supporting multi-frame RGB or RGBD inputs. We
use QWen-1.5-0.5B [30] as the base LLM and CLIP [70] as
the vision encoder. The pretrain dataset is Bunny-pretrain-
LAION-2M [6], and SpatialQA-E is used in finetuning. Four



TABLE 1
RESULTS ON SpatialBench. THE BEST RESULTS OF MODELS WITH THE SAME BASE LLMS ARE MARKED WITH BOLD TEXT. LLM-RGB AND
LLM-RGBD ARE TRAINED ON RGB IMAGES ONLY AND TESTED WITH RGB AND RGBD INPUTS, RESPECTIVELY. SpatialBot WITH RGB INPUT IN
DEPTH ESTIMATION IS THE SAME AS THE MDE TASK.

Model Depth T Position T  Existence T Counting T  Reaching 1  Size 1
GPT-40-RGB - 70.6 85.0 84.5 51.7 433
GPT-40-RGBD - 61.8 90.0 85.2 51.7 40.0
Bunny-Phi2-3B-RGB 70.6 50.0 75.0 89.4 51.7 26.7
SpatialBot-Phi2-3B-RGB 84.1 64.7 80.0 88.0 61.7 28.3
Bunny-Phi2-3B-RGBD 85.8 50.0 75.0 90.4 433 28.3
SpatialBot-Phi2-3B-RGBD >99 61.8 80.0 91.7 55.0 26.7
Bunny-Phi3-4B-RGB 323 58.8 75.0 91.0 31.7 16.7
SpatialBot-Phi3-4B-RGB 83.2 64.7 75.0 91.0 40 23.3
Bunny-Phi3-4B-RGBD 63.3 52.9 60.0 85.4 31.7 18.3
SpatialBot-Phi3-4B-RGBD >99 67.7 70.0 91.7 35.0 21.7
Bunny-QWen-1.5-4B-RGB 42.2 50.0 75.0 91.6 26.7 15.0
SpatialBot-QWen1.5-4B-RGB 89.9 529 75.0 88.6 46.8 18.3
Bunny-QWen-1.5-4B-RGBD 74.6 44.1 70.0 90.7 25.0 15.0
SpatialBot-QWen1.5-4B-RGBD >99 52.9 60.0 90.5 41.7 26.7
Bunny-Llama3-8B-RGB 58.1 50.0 75.0 91.7 38.3 233
SpatialBot-Llama3-8B-RGB 85.6 55.9 80.0 91.2 40.0 20.0
Bunny-Llama3-8B-RGBD 64.0 50.0 75.0 90.4 38.3 25.0
SpatialBot-Llama3-8B-RGBD >99 53.0 75.0 90.4 45.0 20.0
TABLE II

RESULTS ON GENERAL VLM BENCHMARKS. FOR THE SAME BASE LLM MODELS, BETTER RESULTS ARE MARKED WITH BOLD TEXT. RGB-D INPUTS
ARE ONLY USED IN MME. WE REPORT THE RESULTS OF BUNNY TRAINED WITH RGB AND TESTED WITH RGB/RGB-D IN IT, SPLIT WITH SLASH.
SpatialBot 1S TRAINED ON RGBD AND TESTED ON RGB/RGB-D oN MME.

Model | MME"t+ MMEC+ MMBT{ MMBP+ SEEDI+ VQA“”’1 GQAt POPE ¢
Bunny-Phi2-3B 1472/1474 286/285 67.90 68.90 69.91 78.98 61.52 86.21
SpatialBot-Phi2-3B 1483/1487  310/312 70.12 68.56 70.85 79.80 62.28 87.04
Bunny-Phi3-4B 1417/1364  308/319 70.15 70.74 71.04 80.57 61.18 84.60
SpatialBot-Phi3-4B 1431/1433 337/329 73.49 73.11 71.64 80.01 62.16 8547
Bunny-QWen1.5-4B 1340/1364 251/254 69.56 68.56 70.05 80.63 61.55 85.10
SpatialBot-QWenl.5-4B | 1378/1406  266/285 70.91 69.67 70.36 79.69 62.77 86.09
Bunny-Llama3-8B 1574/1542 342/318 73.67 74.15 72.32 80.50 62.18 85.22
SpatialBot-LLama3-8B 1577/1576 352/333 75.78 74.83 72.40 80.94 62.90 85.33
90% B RGB accurately. Please refer to our supplementary video for
RGBD demonstration.
60%
V. CONCLUSION
We propose SpatialBot, a family of state-of-the-art VLM,
30% for effective depth understanding and thus precise robot
manipulating in embodied Al by training on our constructed
. Spatial QA and SpatialQA-E datasets. SpatialBench is also
0% . .
Positional Size llusion Overall designed t(? evalugte the model pe'rformance of spatial
knowledge in multiple aspects. Experimental results on our
Fig. 6.  SpatialBot success rate in pick-and-place of RGB and RGBD benchmark general VLM benchmarks, and robot manipula-
variants. ? ’

frames in history are used to predict the end-effector delta
position of the current frame. The model runs locally or
connects through an ssh/sftp connection to run on RTX 4090
GPU. It is validated through experiments that SpatialBot can
do manipulation tasks with spatial instructions. Fig. [f] shows
the success rate of SpatialBot RGB and RGBD variants.
With depth information, SpatialBot can pick and place more

tion deployment verify the effectiveness and superiority of
SpatialBot comparing to competitors.
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