ManipVQA: Injecting Robotic Affordance and Physically Grounded Information into Multi-Modal Large Language Models

Siyuan Huang^{*,1,3}, laroslav Ponomarenko^{*,2}, Zhengkai Jiang⁵, Xiaoqi Li², Xiaobin Hu⁶ Peng Gao¹, Hongsheng Li^{1,4}, Hao Dong²

¹Shanghai Al Laboratory, ²Peking University, ³Shanghai Jiao Tong University, ⁴CUHK, ⁵UCAS, ⁶TUM

Introduction

General Visual Reasoning Datasets Physically Grounded Dataset

Current MLLMs, while proficient in general vision tasks, encounter significant challenges in robotic manipulation. These limitations arise from their struggle to recognize affordances and physical properties of objects, which are essential for robotic manipulation.

ManipVQA overcomes these limitations by infusing MLLMs with robotics-specific knowledge.

Demonstration

ACO, RefCOCO, and Visual Genome Rich sources of information on parts and attributes of common objects		PhysObjects Dataset We use annotations for liquid storage suitability, seal-ability, and transparenc
---	--	--

Robotic Affordance Datasets

HANDAL Dataset 212 hardware and kitchen tools with annotated handle locations		RGB-D Part Affordance Dataset 105 kitchen, workshop, and garden tools with 7 pre-defined affordances
---	--	--

Х

Augmented Instructions with GPT-4 Contextually rich affordance-based tasks

Question: IMAGE + [x1, y1, x2, y2] + "Can contain liquid?" ManipVQA: "True"

Affordance Recognition

Physical Properties Understanding

Method & Key Contributions

1) Unified VQA Format

ManipVQA Outperforms Previous Models in Robotic Specific Vision Tasks

