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Abstract

Recent advancements in visual actionable affordance
research have demonstrated its strong ability to manipu-
late various articulated objects. The point-level actionable
score indicates where and how the robot interacts with the
object, which is learned through self-supervised trial and
error without any expert demonstration, rule-based pol-
icy, or task-specific reward design. Previous works mainly
focused on object-centric visual manipulation. However,
we have noticed that human-made articulated objects (e.g.
handles on doors) often have salient parts designed for in-
teraction. Selecting these parts for manipulation is crucial
for the success rate of many tasks. In this work, we consider
both part-level and point-level geometry information simul-
taneously. We first design a part selecting score to choose
suitable parts for interaction. By leveraging per-part pre-
dictions and utilizing the prior information provided by
these parts, we then predict the part-aware fine-grained af-
fordance map in an SE(3) invariant manner. Thus, it will
result in a significant improvement in the success rate of
many long-term manipulation tasks.

1. Introduction
3D articulated objects are common in our daily lives, and

they involve sophisticated interactions by humans due to
their complex structures and functionalities. Similarly, we
expect modern robots to help humans perform a range of
in-home activities, automatically recognizing and manipu-
lating various objects. For example, robots can open and
close articulated objects such as doors, drawers, and cabi-
nets to complete assigned tasks.

A prevailing paradigm in existing methods for robotic
manipulation involves perceiving objects’ joint parameters
and structures. However, using these representations as
the input for the manipulation policy may neglect the ge-
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Figure 1. Overview. We propose to use both point-level and part-
level affordance for object manipulation.

ometric features of the object that are necessary for subse-
quent robotic manipulation tasks. For instance, the shape
of a drawer handle can vary, and it may require different
grabbing stances. Recent studies have suggested a solu-
tion to mitigate this problem through visual actionable af-
fordance [32, 56, 63], which involves predicting the point-
level actionability or motion trajectories on an object’s sur-
face using action primitives like pushing and pulling.

However, the current visual actionable affordance ap-
proaches for manipulating articulated objects have some
flaws in their design. Our first argument is that previ-
ous pipelines did not include part conception, which could
result in high actionability scores being predicted for the
frame or board of an item, particularly when it comes to un-
seen objects. In order to achieve reasonable performance,
these approaches often use ground-truth part masks during
testing, which is not realistic when manipulating novel ob-
jects in the real world. Second, based on the definition of
the affordance score, the prediction should remain the same



regardless of the object’s position or orientation. However,
the results of these methods show that the prediction can
significantly change when the same object changes its pos-
ture. In these methods, we also observed that a high pre-
dicted affordance score at the corner of a door could make
it difficult to interact with, whereas a point on the handle
with a slightly lower score could make it easier. This is be-
cause these approaches can only predict affordance scores
at the individual point level without considering any seman-
tic information.

To sum up, our contributions are summarized as follows

1. We propose a part-aware approach for manipulating
3D articulated objects that does not require ground
truth part masks during inference. The method em-
ploys a coarse-to-fine strategy that refines the part seg-
mentation over multiple stages, utilizing both part-
level and global information.

2. We are the first to consider part-awareness in the con-
text of visual actionable affordance, addressing the
limitations of existing methods that neglect the prior
information provided by the parts, leading to ambigu-
ity.

3. We use a subset of the large-scale part-centric interac-
tive dataset GAPartNet and simulation environments
created in IsaacGym to collect data and evaluate the
proposed approach. The approach is evaluated us-
ing two-part categories (doors and drawers) to cover 7
common indoor object categories. The ablation study
provides insights into the effectiveness of the proposed
method.

2. Related Works
2.1. Articulated Object Manipulation

Robotics and computer vision researchers have long
studied the manipulation of articulated objects. For exam-
ple, there were approaches of inferring object motion and
pose from visual perception [14, 19, 48, 49, 60], manipulat-
ing objects interactively and understanding scenes [12, 13,
17, 18, 27, 30, 45, 51], and using machine learning methods
for 3D object manipulation and scene reasoning. [6, 28, 29,
39–41].

A vast amount of literature has shown practical methods
for getting precise link poses, joint parameters, kinematic
structures, and even system dynamics of 3D articulated ob-
jects. These methods use visual feature trackers, motion
segmentation predictors, and probabilistic estimators. Nu-
merous robotic planning and control techniques have also
been investigated in earlier works [3, 4, 15, 42] for handling
3D articulated objects. More recent efforts have used learn-
ing techniques to improve predictions of articulated part

configurations, parameters, and states [16,23,25,35,53–55,
61, 64], as well as estimation of kinematic structures [1, 47]
and manipulation of 3D articulated objects using learned vi-
sual knowledge [2, 7, 9, 21, 31, 52, 59].

2.2. Visual Actionable Affordance

Affordance indicates possible ways for robots to inter-
act with the object and environment [11]. Previous works
have investigated affordance for various tasks, including
robot grasping [22, 43], robot manipulation [26, 33, 38,
44, 56, 63], hand-object interaction [5, 8, 20, 26, 62] and
object-object [34, 50, 65] interaction. Among these stud-
ies, many works require human annotations or demonstra-
tions [8, 20, 22, 37], while some recent works learn affor-
dance through trial and error without the need for human
annotations [33,38,56,63]. Recent studies [33,56,63] have
proposed point-level visual actionable affordance to manip-
ulate articulated objects. These affordances indicate every
location on the object and suggest how robots can interact
with them. In addition, this approach has shown promising
generalizable ability over diverse shapes. Different from
studies that use part information during testing, our work is
a top-down method that utilizes part-level information dur-
ing the training phase to suggest which part the robot should
interact with and where on the object.

3. Method

Part-aware Affordance. Part-aware visual affordance
learning is a framework for learning the affordances of ob-
jects by considering their parts and visual appearance. This
approach combines object recognition and grasping pose
prediction to identify the relevant parts of an object and the
motion direction necessary for successful grasping. SE(3)
invariant affordance learning is also used in part-aware vi-
sual affordance learning. By learning SE(3) invariant fea-
tures, the affordance learning model can generalize to ob-
jects with different poses and orientations. We will then
explain how to implement this in our pipeline in detail by
introducing our point-level and part-level affordance learn-
ing module below.

3.1. Part-aware Visual Affordance Learning

Point-level Affordance Learning. Following the definition
in [32], we first predict per-point affordance. Due to the lack
of part information in [32], they directly collect the interac-
tion result for each point on the object. Thanks to the rich
part annotation in GAPartNet [10], we thus benefit from the
part segmentation and poses. Hence, the only points under
the notated actionable parts can be interacted. So in our
method, we directly collect the interaction information on
the points under the actionable parts. What’s more, thanks
to the GPU-parallel simulator IsaacGym [24], we can par-



allel sample each point we want, instead of a subset of all
points in [32].

After data collection, we propose our part-aware point-
level affordance learning module. Given a partially ob-
served point cloud O, we first use the part segmentation
and pose estimation module proposed in GAPartNet [10]
to segmentation each part {Pi} and pose {pi = (ti, Ri)}.
For a part Pi, we first query the points Oi, which belong
to this part. Then we transfer this point cloud into its esti-
mated canonical space using the estimated pose pi, and we
get transferred part point cloud Ôi for part Pi. Till now, we
finish the point cloud pre-processing stage, then we use the

point-level affordance head in our pipeline to estimate
the affordance score for each point in the part canonical
point cloud Ôi. Following this process for each predicted
part, we mix the results and get the first-stage per-point af-
fordance map Apre.

Apre =

Npart⋃
i=1

Ai
pre

Then we also tackle the problem that the estimated parts
may be inaccurate, we thus introduce a residual affordance
prediction module. Given the first-stage predicted affor-
dance map Apre and the whole point cloud O, we estimate a
residual affordance score for each point in the whole point
cloud and get Ares. Finally, we can get the predicted point-
level affordance map A = Apre + Ares. A is supervised by
Â with L2 loss.

Lpoint =
1

Npoint

Npoint∑
j=1

(Aj − Âj)
2

Part-level Affordance Learning. We also innovatively de-
fine a part-level affordance, which is a score for each pre-
dicted part. The higher part-level score means it’s better to
interact with this part to finish the given task, e.g. if we want
to open a door with a handle, we can interact with both the
door and the handle to finish it. And if we estimate that
the handle is a better one to finish, we may try to interact
with and the corresponding part-level affordance should be
higher.

To train the part-level affordance module, we use the col-
lected point-level affordance map to calculate the average
score for points with a score higher than a given threshold
τ in a given part. And use this truncated average score as
the ground truth of the part-level affordance score, which is
{ŝi}

For each predicted part Pi, we estimate a part-level af-
fordance score ŝi for it. This score is also supervised by L2
loss.

Lpart =
1

Npart

Npart∑
i=1

(si − ŝi)
2

We integrate the point-level and part-level affordance in
our pipeline and in addition to the part segmentation and
pose estimation loss Lseg,Lpose, we add our affordance loss
to the pipeline, which is

L = Lseg + Lpose + Lpoint + Lpart.

3.2. Part-aware Interaction Policy

We then introduce how we finish the object manipula-
tion task using the predicted part-level and point-level af-
fordance.

Our method first takes an observation O and predicts the
part-level score s and affordance map A for all parts in the
observation. We first select the part with the highest part-
level score as the part as the target part. Then, in this part,
we select a point with the highest point-level score to inter-
act with. We follow the affordance definition to pull or push
this point and finish the first interaction step.

Then, iteratively, we follow the process above several
times until we finish the manipulation task or we reach a
maximum number of interaction steps.

3.3. Training Data Collection

It is infeasible to collect training data from human in-
teractions. Instead, we benefit from the physics simulator
to collect the data. Thanks to the GPU-parallel simulator
IsaacGym [24], we can collect interaction data in parallel.
We build up an interaction environment, in which we use
the parallel gripper of the Franka Robot Arm to interact with
each point in a certain direction we want and see whether to
part moved or not. We collect data for each point on the part
and cover 68 different directions.
4. Experiments

In this section, we evaluate our method in a simulated
environment qualitatively and quantitatively. We first elab-
orate the environment and settings in Sec. 4.1. Qualitative
results show promising generalization capability.
4.1. Environment and Settings

We evaluate our method with both diverse simulation
manipulation tasks and real-world robot experiments.

Simulation We set up the simulated environment with
NVIDIA’s IsaacGym [24], a simulator tailored towards
high-performance GPU parallelization. Objects are from
GAPartNet dataset [10], a large-scale part-centric dataset
with rich part annotation based on PartNet- Mobility [58].

For each interaction session, we first randomly load one
articulated 3D object into the environment with randomly
initialized joint configurations. Then, a Franka Panda Fly-
ing gripper with 2 fingers is used as the robot actuator.
There are 8 degree-of-freedom (DoF) in total (3 DoF for
position, 3 DoF for orientation, and 2 DoF for the 2 fin-
gers). We use an RGB-D camera of resolution 800 × 800
with a randomly sampled viewpoint in front of the object.



Figure 2. Overview. We first select the suitable part for interaction based on the part selecting score, and then predict the affordance
map in NPCS. Our method takes point clouds as input, extracts point cloud features using 3D-Unet, processes them through two branches,
semantic and offset,finally obtains the features of each point on the per-part through clustering. Then, after processing with 3D-Unet,
pooling layer, and NPCS, we can obtain information such as pose and local affordance map prior. Simultaneously, by inputting task point
feature, the model can obtain part-level affordance score.

We evaluate our method in a simulated environment with
objects from GAPartNet [10] and a physics engine from
Isaac Gym [24]. We use two types of parts: drawer and
door, which cover 7 common categories of indoor objects.

4.2. Baselines and Metrics

Baselines. To verify the effectiveness of our method,
we compare two types of baselines:

• PPO: We use the PPO algorithm to finish the tasks in
an RL manner. We take the same observation as input
as ours. We design the dense reward borrowed from
ManiSkill [36].

• PPO+BC: We use PPO for state-based policy and col-
lect demonstrations at the same time. Then we use be-
havior cloning for vision-based policy.

• ILAD: We follow the ILAD algorithm to finish our
tasks. The setting is similar to the PPO baseline.

• M-Where2Act: We modify Where2Act [32] baseline.
we sample data for every point on the object and boost
the performance compared with the original imple-
mentation. This baseline takes the oracle part mask
as input.

Metrics. Following [32], we run interaction trials in
simulation and report success rates for quantitative evalu-
ation.

4.3. Ablation Study and Analysis

To further evaluate the different components of our
method, we conduct an experiment to evaluate the usage
of our proposed part-level affordance in Tab.2.

Methods Success Rate for Door and Drawer
PPO [46] 13.92
PPO+BC 44.95
ILAD [57] 37.32
M-Where2Act [32] 53.04
Ours 59.97

Table 1. Results

Methods Success Rate
Ours w/o Part-level Score 55.28
Ours w/ Part-level Score 59.97

Table 2. Ablation

5. Conclusion

We present a novel approach that aims to improve the
manipulation of articulated objects by utilizing visual ac-
tionable affordance.Our proposed framework utilizes per-
part predictions and preliminary part information to over-
come the limitations of existing visual actionable affor-
dance methods. By considering the robot’s perception of
articulated objects at both the point-level and part-level, our
framework provides a more comprehensive understanding
of the object’s affordances.The part-selecting score serves
as an indicator of the suitability of each part for manip-
ulation, based on its grasp ability and affordance. This
approach allows the robot to identify the most optimal
parts for manipulation, leading to higher task success rates.
To predict affordance maps, we employ Normalized Part
Coordinate Space (NPCS), which eliminates the depen-
dence on object pose and orientation. This standardizes
the reference frame for the object’s parts, providing a nor-
malized and standardized basis for more accurate predic-
tions, which leads to better generalization to novel ob-
jects and more robust manipulation in real-world scenar-
ios.
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